MindBridge recognized as a top 20 AI firm in Canada

We’re incredibly excited to announce that MindBridge has been included in the Vector Institute’s inaugural AI20 for 2023. Read more in the Press Release published here. With over 1,200 artificial intelligence-focused firms in Canada, receiving this recognition alongside a select group of leading Canadian AI organizations is a testament to the value we consistently deliver … Read more

AI for enterprise risk management (webinar recap)

On February 23, 2022, MindBridge’s VP of Strategy and Industry Relations, Danielle Supkis Cheek, CPA, CFE, CVA, hosted a live webinar and Q&A on how to remove barriers to AI for your core ERM framework. Danielle shared some great insights during the webinar (video link shared below), and the attendees were very engaging by participating in polls and asking great questions in the Q&A.

Thank you to everyone that attended the live event, and for anyone that missed it, you can view a recording of the webinar here or keep reading for a recap of some of the most valuable key takeaways.

Introduction

Financial technology transformation is moving rapidly, making it hard for enterprises and their leadership to adapt their Enterprise Risk Management processes. The impact on informed judgment can be detrimental if risks are not appropriately managed. AI solves this challenge by helping financial professionals augment traditional risk management processes and quickly and more accurately identify anomalies and surface insights to mitigate risk. 

AI’s Place In The COSO ERM Framework

Nuggets of information are difficult to process anytime you have extreme amounts of data, ledgers, or sub-ledgers of other operational datasets. And while most of us have some data analytics programs in-house, it is incredibly challenging to build out complex programs that encompass the basis of outlier detection based on your norms or control points. 

That’s where AI can start fitting in.  

AI enables the ability to aggregate extreme amounts of data that would typically otherwise be highly cumbersome to aggregate and use for decision-useful information. Therefore, instead of going through a theoretical exercise, you’re able to use actual concepts and actual risks that are permeating through your data. 

Current Pressures Creates New Risks

The risk environment is constantly changing. With factors such as staffing shortages, new regulations, data volume issues, and budget pressures, organizations must be aware of how these pressures affect their risk profile.

When you have all those different kinds of changes in pressures, your risk profile also changes very rapidly and in ways that you may not necessarily be aware of. Sure, you probably have good guesses, you probably have really good insights and intel that’s coming in, but the speed at which that changes is tremendous. E.g., One of the most concerning pressures that organizations face is to do more with less. This burden pressures organizations to either skip a couple of steps or bypass a process which could ultimately lead to errors.

Detecting Behavior in Data  

Here at MindBridge, a lot of the work we’re doing related to risk stems from the question of ‘what are the risks created within organizations that are related to humans as part of it?’ What’s essential within the data, and what you see through the data, is behavior, the human behavior. Of course, there are external risks to consider; however, there are also things that may not necessarily be seen inside existing data and can only be discovered by looking within your organization’s environment. 

“When a measure becomes a target, it ceases to be a good measure.”

 – Charles Goodhart

This quote basically says that any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes. 

KPIs create accountability for an organization— hit your metrics. The problem is that many organizations either put hyper-focus on a singular metric or a series of metrics that can be manipulated the same way. 

Ensemble AI

Ensemble AI combines three different types of things (machine learning, statistical methods, and traditional rules), weighs them together, and presents them so that you (the human) may determine what doesn’t look ‘right.’ This trigger is designed to give you plenty of clues and indications as to what you should be paying attention to in your books that could potentially become, or already is, an issue. 

This process allows the analysis to identify the relative risk of unusual patterns by combining a human expert understanding of business processes and financial, monetary flows with outlier detection. 

“An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem”

-John Turkey.

Outlier vs. Anomaly

Many people use the terms outlier and anomaly synonymously. Outliers are distant observations from the mean or location of a distribution. However, they don’t necessarily represent abnormal behavior or behavior generated by a different process. On the other hand, anomalies are data patterns generated by different processes.

Control Points / Tests

 MindBridge control points are designed to compare client data against pre-defined areas of risk, providing visualizations and reports to understand levels of risk (risk scores), identify unusual transactions, and drill-down into the details. With Ensemble AI, these control points work together to provide results that couldn’t be achieved by running each capability separately. 

To give you an idea, MindBridge has one control point that looks at the pairing of transactions. And let’s say the pairing of accounts receivable and revenue is one of your ‘norms.’ If you look and see that you have a transaction that pairs cash to revenue, it would be flagged for review as it is not the standard pairing. Machine learning is needed in that iteration to determine “what is normal” in each uploaded file.

The same concept also applies to vendor analysis. For example, let’s say you pay $30,000 a month rent for a particular landlord, and then all of a sudden, you see a $60,000 amount. That transaction will get flagged as an “unusual” amount for you to review. 

This unusual amount may be justified as rent + deposit or a similar situation. However, if said outlier occurred in the last month of the fiscal year, you may have some other factors to consider. For instance, do you have a massive cut-off issue? 

All those different tests are run simultaneously, in real-time, on 100% of transactions. So instead of going down theoretical exercises of risk, you can start looking at actual concepts of risks and use that to shape your judgment related to what kind of risks and what other areas you need to spend some time on.

Use Case

During the webinar, Danielle presented many strong use cases concerning the utilization of AI in the ERM framework. We don’t want to spoil the entire show for you, so we’ll just cover one of the use cases in this recap.

One of the use cases presented was the DOJ’s effective compliance program.

The DOJ’s effective compliance program is the DOJ’s response to what compliance program they expect you have in place to address the risks of violating the Foreign Corrupt Practices Act, which comes with criminal penalties associated with it. 

Let’s face it; no one wants to go to jail, especially for something done without your knowledge. And due to the differences in international business practices, something that may be a standard practice in a foreign country (e.g., bribes) may be illegal at home. 

Suppose a foreign third party makes bribes without your knowledge and the DOJ sees that you have an effective compliance program. In that case, you may have an affirmative defense to not have criminal liability for an FCPA violation. You may likely have some civil liability for it, but you don’t have people going off to jail. 

The DOJ uses three significant components when evaluating the competence of your compliance programs.

1. Is it a well-designed program?

Here they’re determining if there are procedures in place for risk assessment. For example, is there risk-based training, are there appropriate controls and processes for third-party management, and what is your due diligence process in mergers and acquisitions?

2. Is the program being applied earnestly and in good faith? In other words, is the program adequately resourced and empowered to function effectively?

The DOJ is very interested in what kind of resources you provide to this program and how much funding is being allocated. Unfortunately, the attachment of funding as a factor poses a problem for some organizations because not all money is spent efficiently. So many people have spent a lot of money to build a program that ends up being too narrow scope when a more holistic concept is needed. 

3. Does the corporation’s compliance program work in practice?

For more holistic concepts of risk, the DOJ wants to see the internal audit, control, testing, and the iteration and constant evolution of the programs; but most importantly, does it work? This is very similar to enterprise risk management, where you’re constantly reassessing and fine-tuning and becoming more precise. This process can be challenging if you don’t have an inflow of real data that can be processed in real-time. 

Technology Ethics

In a new technology benchmarking report, the Association of Certified Fraud Examiners said, “The use of AI and Machine Learning in anti-fraud programs is expected to more than DOUBLE over the next two years.” This is scary because some people don’t know how to supervise AI properly. There are a lot of tools out there that will let you custom configure your own AI. The problem is that you don’t know if it’s actually free from bias or if you’re supervising it appropriately. 

IESBA Technology Ethics Project

“The use of technology is a specific circumstance that might create threats to compliance with the fundamental principles. Considerations that are relevant when identifying such threats when a professional accountant relies upon the output from technology include:
  • Whether information about how the technology functions is available to the accountant.
  • Whether the technology is appropriate for the purpose for which it is to be used.
  • Whether the accountant has the professional competence to understand, use and explain the output from the technology.
  • Whether the technology incorporates expertise or judgments of the accountant or the employing organization.
  • Whether the technology was designed or developed by the accountant or employing organization and therefore might create a self-interest or self-review threat.”

Source: https://www.ifac.org/system/files/publications/files/Proposed-Technology-related-Revisions-to-the-Code.pdf

The standards mentioned above are part of the new technology ethics project out of the International ethics group for CPAs. You may think this standard is related to public accountants or your auditors. But actually, this is the proposed standard for CPAs worldwide that are internal to an organization. That means your controllers, your CFOs, your internal audit team, and any CPAs you may have in your organization.

So, it is crucial to be cautious if your organization decides to take the “build your own” or “use a wizard” machine learning route where some people may not necessarily know exactly how the program works. This lack of transparency can create a risk for your organization and the individuals within your organization that carry a CPA license.

Click here to view a complete recording of the webinar.

How accounting firms are driving growth with AI

Commoditization has been a hot topic in the audit industry for some time now. We’ve heard from many prominent voices that commoditization is real – the invisible and somewhat mean-hand of the market driving prices down for audit as the only differentiator is price. But at the same time, we have been seeing average audit fees rise faster than inflation. For example, for a basket of US-listed entities, average audit fees increased from $6m in 2002 to over $15m by 2020, significantly outpacing inflation over the same period. 

We’ve also seen significant evidence that price is not the only factor when choosing an audit firm. Of course, the expertise of the engagement team comes out number one, but increasingly the technological capabilities that firms can bring to bear are playing a key role.

Generally, it seems that firms that are responding faster to society’s rising expectations for efficient audits are reaping the benefits. Being able to win larger, more important, and more profitable audit clients is a key strategic advantage for these firms. However, at the larger end of the market, firms that are now unable to talk to their next-generation or data-driven audit are left with price as a remaining primary lever they must use to differentiate.

Of course, this is not always the case. A significant portion of buyers in the audit is still looking purely for the lowest price. The additional trust and credibility that auditors bring to financial statements today does not seem to carry much weight for this lowest price-focused buyer. For many such stakeholders, it is not easy to differentiate between a high and low-quality audit product. It is up to the audit firm to demonstrate that differentiation, and if undercutting is still a key strategy for an audit firm, then there is still a way to use technology to display how the level of assurance is not compromised despite the low price.

Thinking about the value proposition for a data-driven audit throughout the customer lifecycle is key to demonstrating this value.

Clear outcomes

Before speaking to value, having a clear set of outcomes for a data-driven audit approach is essential. Understanding how the service you are providing will change helps you effectively sell the value of this approach internally and externally. Defining these outcomes and understanding the differentiated value proposition that your firm offers is key.

1. Market facing

Even before you start talking to a prospective client, the firm must be communicating its outcomes in implementing a data-driven approach. Whether this is a lessened focus and effort on low risk-areas, more informed conversations with clients, or direct value-add, it’s critical to emphasize these factors to your market. Creating case studies, dedicating a section of your website for innovation, providing examples in newsletters, and aligning to accounting technology standards such as ISA315, SAS142, and SAS145 are great ways to raise awareness.

2. Proposals and tendering

Allowing your innovation and data team to have input into the proposal process is a step above, both in the form of a dedicated section in the proposal template as well as a process that allows the engagement team to demo the analytics capabilities during meetings. This demonstration could be done with demo-designed data or real data, depending on the importance of the proposal. It also offers technical and data-savvy staff an opportunity to get involved in this discussion with the client.

3. Planning and fieldwork

This audit stage centers around evidence gathering and learning from the auditor. Using data to deepen the engagement team’s understanding of the client can help with a far more productive conversation earlier in the audit process, but it is key that you’re demonstrating how you came to the conclusions you came to. Using visualizations during these conversations is a fantastic way to achieve this, and even better if you can navigate an analytics tool on the fly to adapt to where the conversation is going during the planning meeting.

4. Completion

Ultimately, it’s at this stage that the client sees most of the outputs for the audit process. As a result, we’ve found that including descriptive analytics is a fantastic way to add context to audit findings and cement a perception of value with your client. 

Where to go from here? The pace of change in audit is accelerating, and there is a growing number of technologies that auditors can leverage in various ways. These are opening up strategic opportunities for firms to differentiate – but to do so means that they must be willing to take a different approach from their peers. So whether it is changing where the team is focusing on the audit, how they communicate with their client, or adding net new insights to the post-audit reporting, implementing technology is becoming mandatory as a differentiator and a means to deliver a more efficient audit.



For more information on how top accounting firms are driving growth with AI,
register now for our upcoming webinar with Cherry Bekaert.

This webinar
will cover how Cherry Bekaert’s success with leveraging advanced data analytics for risk discovery has continued to offer more significant insights and more efficient audits.

Webinar: Improving audit efficiency by reducing sampling: The value of data-driven assurance

How AI is changing expectations for auditors

CFO using the MindBridge API for auditing automation

There are some ways that AI is becoming obvious in our daily lives, be it in the driverless technology found in cars or in the tailored content selected for you by streaming services. Many of us have received a reassuring text message from our banks, verifying that the recent payment was you and not some fraudster. You can thank the watchful eye of anomaly detection algorithms that have been keeping our money and accounts safe.  

 Businesses are similarly coming to rely on machine learning to inform critical decision-making. Increasingly, machine learning is finding its place throughout organizations, from customer retention to marketing and finance. Assurance and audit are no different. As the value of these technologies becomes clear and society expects more, pressure builds on auditors to improve. 

 

Reasonable to ask for more assurance 

 The standards have required auditors to deliver a ‘reasonable’ level assurance, a level that is not absolute but rather a high level determined, really, by a shared sense of best practices. Over the last few years, we have seen auditors adapt to the way they are working, and the way they demonstrate their quality. This is largely in response to the market; buyers are becoming more sophisticated. “Audit committees require audit firms to provide extensive evidence to demonstrate their quality. It has become normal to test a firm’s technology, including its data analysis capabilities,” noted PwC in 2018. 

 This is a trend that we are seeing in multiple markets, with a top US firm commenting that “our client’s technology and data availability plays a role in drivers of change. The more clients are using technology, their expectation is elevated on our use of technology.” What constitutes a reasonable level of assurance is changing. 

 Regulators are aware of the positive impact that new technologies can deliver, with the PCAOB foreseeing that “the future of audit will be able to provide a greater level of “reasonable assurance” as auditors may be able to examine 100 per cent of a client’s transactions.” 

 This view is also backed up in a large review of the UK Audit market performed by Sir Donald Brydon. ” As such technologies become widespread in use, stretching beyond journal testing, they will clearly have an impact on the cost of audit (less human checking) and on the depth of testing that will be possible” noted Brydon. 

 Cost savings and the search for efficiencies have often been key drivers of technology adoption in audit for audit partners, but the importance of demonstrating higher levels of audit quality has become clear. The fact that BDO calls out technology as a key aspect in their recent win of SAP as an audit client demonstrates this fact. 

 

AI: An enabler for risk-based auditing 

 Whilst the PCAOB speaks of transaction scoring as a technology of the future, firms are leveraging MindBridge’s 100% risk scoring across the US today. By scanning transactions using a variety of techniques, auditors are both better able to assess risk, and better able to find those risky and unusual transactions. This translates to an audit with less ticking-and-tying, and a greater focus on what matters. It allows fewer audit staff to get through more information and provides greater assurance at the end of it all. 

 An example of an audit algorithm in action is MindBridge’s “outlier detection.” This category of algorithm identifies unusual financial patterns, helping fulfil the requirement of ISA 240, which sets an expectation for auditors to look for unusual activities. An additional benefit of outlier detection is that its methodology consists of unsupervised machine learning, meaning algorithms are not trained or taught on specific data. 

 This overcomes bias in data analysis, with reviewed transactions (i.e., the general ledger of companies), identifying what is normal for the audited entity and separating out what is empirically unusual activity.  

 The unsupervised methods of outlier detection allow for data to be analyzed and anomalies drawn out without requiring training on similar entities. It can also be applied to all types of organizations, irrespective of their size or industry.  

 While outlier detection is effective for detecting new activity and outliers in data, it does not have a prior or pre-existing understanding of accounting processes. It is our belief that there is still a role for the expert system in the context of risk scoring for audit. MindBridge’s “Expert Score” is an example, it’s an indicator that flags transactions based on a database of pre-existing rules determined to be unusual. Write-offs directly between cash and expense will consistently get flagged by Expert Score. 

 Expert Score has recently been enhanced by looking at the prevalence of financial flows in the data selected to take part in our curated learning process. Unusual transaction flows are studied and documented before being added to the Expert Score rule base. 

 

Demonstrating quality: key to growth 

 By leveraging these techniques and changing the profile of work, the firms that are most successfully implementing MindBridge are driving success in the market and growth. By speaking to the value throughout the customer lifecycle, these firms are ensuring that the customer sees the value of working with them. 

Expand your expertise, watch this short webinar from MindBridge here and learn how firms are adopting AI to drive growth.